skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Branch, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The process of seeking, sampling, and characterizing deep hydrothermal systems is benefited by the use of autonomous underwater vehicles (AUVs) equipped with in situ sensors. Traditional AUV operations require multiple deployments with manual data analysis by ship-board scientists. Development of advanced autonomous methods that analyze in situ data in real-time and allow the vehicle itself to make decisions would improve the efficiency of operations and enable new frontiers in exploration at hydrothermal systems on Ocean Worlds. Adaptive robotic decision making is facilitated by computational models of hydrothermal systems and selected in situ sensors used to refine and validate these predictions. Improving autonomous missions requires better models, and thus an understanding of how different sensors respond to hydrothermally altered seawater. During cruise AT50-15 (Juan De Fuca Ridge, 2023), we performed surveys of the hydrothermal plumes at the Endeavour Segment with AUV Sentry to investigate the utility of in situ sensors measuring tracers such as oxidation-reduction potential, optical backscatter, methane abundance, conductivity, and temperature, for building working models of plume dynamics. We investigated length scales of under 1 km to 5 km with a focus on reoccupying locations over varying time scales. Persistent deep current data were available through the Ocean Networks Canada mooring array. Using these datasets, we investigate two questions: (1) how reliably and at what length scales can real-time current information be used to predict the location and source of a hydrothermal plume? (2) How does the relative age (hence, biogeochemical maturation) of the hydrothermal plume fluid affect the response of different in situ sensors? These results will be used to inform the development of autonomous plume detection algorithms that use real-time, in situ data with the purpose of improving AUV exploration of hydrothermal plumes on Earth and other Ocean Worlds. 
    more » « less
  2. Deep-sea hydrothermal vents inject dissolved and particulate metals, dissolved gasses, and biological matter into the water column, creating plumes several hundred meters above the seafloor that can be traced thousands of kilometers. To understand the impact of these plumes, rosettes equipped with sample bottles and in situ instruments, e.g., for turbidity, oxidation-reduction potential, and temperature, have been key tools for collecting water column fluid for informative ex situ analysis. However, deploying rosettes strategically in distal (>1km) plume-derived fluids is difficult when plume material is entrained rapidly with background water and transported by complicated bathymetric, internal, and/or tidal currents. This problem is exacerbated when the controlling dynamics are also poorly constrained (e.g., no persistent monitoring, few historical data) and data collected while in the field to estimate or compensate for these dynamics are only available to be analyzed hours or days following an asset deployment. Autonomous underwater vehicles (AUVs) equipped with equivalent in situ instruments to rosettes excel at exploration missions and creating highly-resolved maps at different spatial scales. Utilization of AUVs for hydrothermal plume charting and strategic sampling with rosettes is at a techno-scientific frontier that requires new data transmission and visualization interfaces for supporting real-time evidence-based operational decisions made at sea. We formulated a method for monitoring in situ water properties while an AUV is underway that (1) builds situational awareness of deep fluid mass distributions, (2) allows scientists-in-the-loop to rapidly identify fluid distribution patterns that inform adaptations to AUV missions or deployments of other assets, like rosettes, for targeted sample collection, and (3) supports robust formulation of working hypotheses of plume dynamics for in-field investigation. We will present a description of the method with preliminary results from cruise AT50-15 (Juan de Fuca Ridge, 2023) using AUV Sentry and discuss how supervised autonomy will improve ocean robotics for future science missions. 
    more » « less
  3. Abstract Progress in gravitational-wave (GW) astronomy depends upon having sensitive detectors with good data quality. Since the end of the Laser Interferometer Gravitational-Wave Observatory-Virgo-KAGRA third Observing run in March 2020, detector-characterization efforts have lead to increased sensitivity of the detectors, swifter validation of GW candidates and improved tools used for data-quality products. In this article, we discuss these efforts in detail and their impact on our ability to detect and study GWs. These include the multiple instrumental investigations that led to reduction in transient noise, along with the work to improve software tools used to examine the detectors data-quality. We end with a brief discussion on the role and requirements of detector characterization as the sensitivity of our detectors further improves in the future Observing runs. 
    more » « less
    Free, publicly-accessible full text available April 16, 2026
  4. The Heisenberg uncertainty principle dictates that the position and momentum of an object cannot be simultaneously measured with arbitrary precision, giving rise to an apparent limitation known as the standard quantum limit (SQL). Gravitational-wave detectors use photons to continuously measure the positions of freely falling mirrors and so are affected by the SQL. We investigated the performance of the Laser Interferometer Gravitational-Wave Observatory (LIGO) after the experimental realization of frequency-dependent squeezing designed to surpass the SQL. For the LIGO Livingston detector, we found that the upgrade reduces quantum noise below the SQL by a maximum of three decibels between 35 and 75 hertz while achieving a broadband sensitivity improvement, increasing the overall detector sensitivity during astrophysical observations. 
    more » « less
  5. Abstract The Gravitational-Wave Transient Catalog (GWTC) is a collection of short-duration (transient) gravitational-wave signals identified by the LIGO–Virgo–KAGRA Collaboration in gravitational-wave data produced by the eponymous detectors. The catalog provides information about the identified candidates, such as the arrival time and amplitude of the signal and properties of the signal’s source as inferred from the observational data. GWTC is the data release of this dataset, and version 4.0 extends the catalog to include observations made during the first part of the fourth LIGO–Virgo–KAGRA observing run up until 2024 January 31. This Letter marks an introduction to a collection of articles related to this version of the catalog, GWTC-4.0. The collection of articles accompanying the catalog provides documentation of the methods used to analyze the data, summaries of the catalog of events, observational measurements drawn from the population, and detailed discussions of selected candidates. 
    more » « less
    Free, publicly-accessible full text available December 9, 2026
  6. Abstract We report the observation of gravitational waves from two binary black hole coalescences during the fourth observing run of the LIGO–Virgo–KAGRA detector network, GW241011 and GW241110. The sources of these two signals are characterized by rapid and precisely measured primary spins, nonnegligible spin–orbit misalignment, and unequal mass ratios between their constituent black holes. These properties are characteristic of binaries in which the more massive object was itself formed from a previous binary black hole merger and suggest that the sources of GW241011 and GW241110 may have formed in dense stellar environments in which repeated mergers can take place. As the third-loudest gravitational-wave event published to date, with a median network signal-to-noise ratio of 36.0, GW241011 furthermore yields stringent constraints on the Kerr nature of black holes, the multipolar structure of gravitational-wave generation, and the existence of ultralight bosons within the mass range 10−13–10−12eV. 
    more » « less
    Free, publicly-accessible full text available October 28, 2026
  7. Abstract On 2023 November 23, the two LIGO observatories both detected GW231123, a gravitational-wave signal consistent with the merger of two black holes with masses 13 7 18 + 23 M and 10 1 50 + 22 M (90% credible intervals), at a luminosity distance of 0.7–4.1 Gpc, a redshift of 0.4 0 0.25 + 0.27 , and with a network signal-to-noise ratio of ∼20.7. Both black holes exhibit high spins— 0.9 0 0.19 + 0.10 and 0.8 0 0.52 + 0.20 , respectively. A massive black hole remnant is supported by an independent ringdown analysis. Some properties of GW231123 are subject to large systematic uncertainties, as indicated by differences in the inferred parameters between signal models. The primary black hole lies within or above the theorized mass gap where black holes between 60–130Mshould be rare, due to pair-instability mechanisms, while the secondary spans the gap. The observation of GW231123 therefore suggests the formation of black holes from channels beyond standard stellar collapse and that intermediate-mass black holes of mass ∼200Mform through gravitational-wave-driven mergers. 
    more » « less
    Free, publicly-accessible full text available October 27, 2026
  8. The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses m 1 = 33.6 0.8 + 1.2 M and m 2 = 32.2 1.3 + 0.8 M , and small spins χ 1 , 2 0.26 (90% credibility) and negligible eccentricity e 0.03 . Postmerger data excluding the peak region are consistent with the dominant quadrupolar ( = | m | = 2 ) mode of a Kerr black hole and its first overtone. We constrain the modes’ frequencies to ± 30 % of the Kerr spectrum, providing a test of the remnant’s Kerr nature. We also examine Hawking’s area law, also known as the second law of black hole mechanics, which states that the total area of the black hole event horizons cannot decrease with time. A range of analyses that exclude up to five of the strongest merger cycles confirm that the remnant area is larger than the sum of the initial areas to high credibility. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026